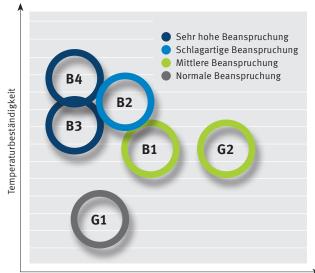


PRODUCTINEORMATION

VENTILFÜHRUNGEN

ANWENDUNGSGEBIETE


Die Ventilführung hat die Aufgabe, die Seitenkräfte, welche auf den Ventilschaft wirken, aufzunehmen. Die Ventilführung zentriert das Ventil auf den Ventilsitzring und leitet einen Teil der Wärme vom Ventilkopf über den Ventilschaft zum Zylinderkopf ab. Aufgrund dieser extremen Belastungen ist bei den Ventilführungen vor allem das Material und dessen Eigenschaften ein entscheidender Faktor für die Produktqualität.

Motorservice verfügt über ein breites Ventilführungssortiment von über 800 Ventilführungstypen für mehr als 3.500 Anwendungen.

MATERIAL

Ventilführungen werden aus Werkstoffen mit guten Gleit- und Wärmeleiteigenschaften hergestellt. Es haben sich dabei Grauguss- und Messingwerkstoffe mit ausgesuchten Legierungsbestandteilen besonders bewährt.

WERKSTOFFE UND BEANSPRUCHUNG

Verschleißfestigkeit

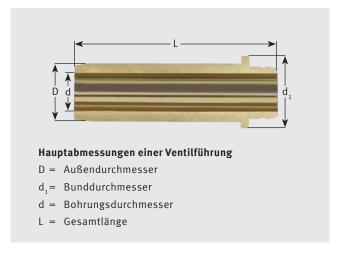
	Grauguss		Kupfermaterialien	Kupfersonderlegierungen	
Werkstoffe	● G1	• G2	● B1	● B2	● B3, B4
Werkstoff- beschreibung	Grauguss mit perlitischem Gefüge	Grauguss mit perliti- schem Grundgefüge und erhöhtem Phosphor- anteil	CuZnAl-Legierung	CuNiSi-Legierung	Metalloidhaltige Sonderlegierungen, T-Hedul-Legierungen
Kraftstoffart	Otto (bleifrei), Diesel	Otto (bleifrei), Diesel, CNG, LPG	Otto (bleifrei), Diesel	Otto (bleifrei)	Otto (bleifrei)
Motoren	Pkw-Motoren mit nor- maler Beanspruchung	Pkw- und Nfz-Motoren mit normaler und mittlerer Beanspruchung	Pkw-Motoren mit normaler und mittlerer Beanspruchung	Pkw-Motoren mit wech- selnder und schlag- artiger Beanspruchung	Pkw-Motoren mit sehr hoher Beanspruchung
Eigenschaften	gute Verschleißfestigkeit	erhöhter Verschleiß- widerstand, gute Notlaufeigenschaften	gute Verschleißfestigkeit bei hoher Gleiteigenschaft	sehr hoher Verschleißwi- derstand bei gleichzeitig guter Wärmeleitfähigkeit	hohe Wärmeleitfähigkeit, hohe Beständigkeit bei mechanischer und che- mischer Beanspruchung bei der Verbrennung

EINBAUHINWEISE

Technischer Hintergrund

Im Zylinderkopf wird die Ventilführung durch einen Presssitz in ihrer Position festgehalten. Die Ventilführung wird beim Einpressen in die Gehäusebohrung des Zylinderkopfs radial eingeschnürt. Die Gehäusebohrung hingegen wird aufgeweitet. Das Ausmaß dieser Verformung hängt einerseits vom Verhältnis zwischen Gehäusebohrungsdurchmesser und Außendurchmesser der Führung sowie andererseits von der Steifigkeit der beiden Bauteile ab. Gibt es starke Unterschiede in der Steifigkeit der Gehäusewand, so kann die radiale Verformung im Verlauf ihrer Länge sehr unterschiedlich sein.

Montage


Beim Ein- und Ausbauen der Ventilführungen auf die richtige Erwärmung des Zylinderkopfs achten (Angaben der Motorenhersteller beachten). Für den Ein- und Ausbau geeignete Montagedorne verwenden. Ein zusätzliches Abkühlen der Ventilführungen erleichtert die Montage erheblich.

Nach der Montage

Vor dem Einbau eines Ventils in die Ventilführung wird gemessen, ob die Bohrung der Ventilführung noch zylindrisch ist, d. h. an allen Stellen den erforderlichen Durchmesser hat. Wir empfehlen generell die Bohrung durch Ausreiben mit einer Reibahle in Durchmesser und Form zu korrigieren.

Richtwerte für das Einbauspiel zwischen Ventilführung und Ventilschaft

Ventilschaftdurch- messer (mm)	Spiel: Einlassventile (µm)	Spiel: Auslassventile (µm)
6 – 7	10 – 40	25 – 55
8 – 9	20 – 50	35 – 65
10 – 12	40 – 70	55 – 85

HINWEIS

Einbau und Inbetriebnahme nur durch Fachpersonal!

