

Cojinetes Permaglide P2

Información sobre el material P200

PRODUC

P200, P202, P203 ... de bajo mantenimiento, universal

Descripción breve

P200, P202 y P203 son materiales deslizantes, ecológicos, de alto rendimiento y sin plomo. Gracias a la combinación especial de materiales de relleno se alcanza una elevada resistencia al desgaste y simultáneamente muy buenas propiedades de rodaje de emergencia. Por tanto éstos materiales son idóneos para aplicaciones de bajo mantenimiento, lubricadas con grasa o líquido y con altos grados de exigencia. La versión estándar P200 posee bolsas de lubricante según DIN ISO 3547 en la superficie de deslizamiento y un espesor de pared listo para el montaje.

A solicitud se pueden suministrar las versiones P202 (superficie de deslizamiento lisa, repasable) y P203 (superficie de deslizamiento lisa, lista para el montaje).

Producción del material

En un proceso de sinterización continuo se sinteriza la capa de unión de bronce sobre una superficie de acero preparada (banda) de modo que resulta un volumen de los poros de aprox. 50 % con un espesor de la capa de aprox. 0,3 mm. Seguidamente, la capa de deslizamiento se aplica en forma de polvo y, bajo efecto de la temperatura, se compacta con rodillos en las cavidades de la capa de unión. Según el uso previsto, sobre la capa de unión se forma un espesor de la capa de deslizamiento de aprox. 0,08 mm o de aprox. 0,2 mm.

Al mismo tiempo se incorporan las bolsas de lubricante, en caso de necesidad. En un proceso de calibrado posterior del laminado se efectúa el ajuste de la precisión de grosor necesaria del material compuesto.

Fabricación de cojinetes

Del material compuesto se fabrican los elementos deslizantes a través de operaciones de corte, estampado y conformado.

Los tipos de construcción estándar son:

- Camisas cilíndricas
- Arandelas de empuje axial
- Tirac

Los cojinetes fabricados de P200, P202 ó P203 reciben al final un tratamiento de protección anticorrosivo para el dorso del cojinete, las caras frontales y las superficies de tope.

Versión estándar: estaño

Espesor de la capa [mm]: aprox. 0,002

Adicionalmente se pueden suministrar a solicitud cojinetes con la mejorada protección anticorrosiva "cinc, pasivado transparente".

Nota:

El estaño sirve como protección anticorrosiva de corta duración y como ayuda para el montaje.

Propiedades

- lubricación de por vida
- · desgaste reducido
- muy buenas propiedades de rodaje de emergencia
- insensible contra la carga de impacto y en los bordes

Material	Versiones				
	Listo para el montaje	Bolsas de lubricante	Sobreespesor de mecanización		
P200	•	•			
P202			•		
P203	•				

- buena capacidad de amortiguación
- buena resistencia química

Campos de aplicación preferentes

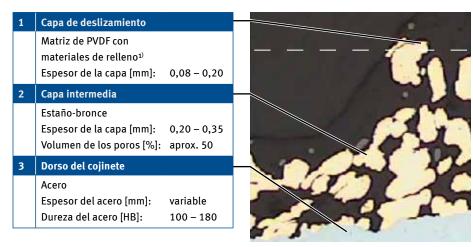
- ámbito de productos alimenticios
- requerimientos especiales relativos al medio ambiente
- servicio de bajo mantenimiento en condiciones de lubricación con altos grados de exigencia
- movimientos rotatorios u oscilatorios hasta una velocidad de deslizamiento de 3,3 m/s
- movimientos lineales de hasta 6 m/s
- rango de temperaturas -40 °C hasta 110 °C

P200 – Cojinete con bolsa de lubricante y agujero de engrase

P202 y P203 poseen superficies de deslizamiento lisas y se pueden emplear en condiciones hidrodinámicas. P202 se puede repasar.

Motor Service ofrece como prestación de servicio el cálculo de los estados de funcionamiento hidrodinámicos.

Nota:


Los materiales P202 y P203 se suministran a solicitud.

Modificaciones y cambios de dibujos reservados. Para la colocación y la sustitución, véanse los catálogos, el CD TecDoc y/o los sistemas basados en datos TecDoc.

Estructura del material P200, P202, P203

Sistema de capas

Composición química

Capa de deslizamiento				
Componentes	% de peso			
PTFE	9 hasta 12			
Materiales de relleno reductores de fric-	22 hasta 26			
ción y desgaste				
PVDF	Resto			
Capa intermedia				
Componentes	% de peso			
Sn	9 hasta 11			
Р	máx. 0,05			
otros	máx. 0,05			
Cu	Resto			
Dorso del cojinete				
Material	Información del material			
Acero	DC04			
	DIN EN 10130			
	DIN EN 10139			

Valores característicos del material

Valores característicos, carga crítica	Símbolo	Unidad	Valor
Valor pv admisible	pv _{adm.}	MPa·m/s	3,3
Carga de cojinete admisible específica			
• estática	p _{adm.}	MPa	250
Carga puntual, carga circunferencial con velocidad de deslizamiento ≤0,024 m/s	p _{adm.}	MPa	140
Carga puntual, carga circunferencial con velocidad de deslizamiento ≤0,047 m/s	p _{adm.}	MPa	70
• Carga puntual, carga circunferencial, pulsátil a velocidad de deslizamiento ≤0,094 m/s	p _{adm.}	MPa	35
Velocidad de deslizamiento admisible			
• engrasado, rotatorio, oscilante	V _{adm.}	m/s	3,3
• engrasado, lineal	V _{adm.}	m/s	6
• funcionamiento hidrodinámico	V _{adm.}	m/s	6
Temperatura admisible	T _{adm.}	°C	-40 hasta +110
Coeficiente de dilatación térmica			
• dorsal de acero	a _{Ac}	K ⁻¹	11*10 ⁻⁶
Coeficiente de conductividad térmica			
• dorsal de acero	$\lambda_{_{Ac}}$	W(mK) ⁻¹	〈 4

¹⁾ Con esta masa se rellenan las cavidades de la capa intermedia.