

PRODUCTINEORMATION

P180 ... HIGHLY RESILIENT AND RESISTANT – THE SUSTAINABLE AND LEAD-FREE P1 MATERIAL OF THE FUTURE

Overview

P180 is a lead-free high-performance material with outstanding tribological performance. It is designed for maintenance-free applications under dry-running conditions. In addition, it can be used in both grease- and liquid-lubricated systems. P180 is a further development of the tried and tested P14 material with improved resilience and wear resistance whether in dry or lubricated applications. The material can also be used in tribological systems that were previously only operated with materials containing lead, such as P10.

Material manufacture

The solid lubricant mass is produced in a specially adapted mixing process. In a parallel, continuous sintering operation, bronze powder is sintered onto the steel back as a sliding layer. This produces a sliding layer with a thickness from 0.2 mm to 0.35 mm and a pore volume of approx. 30 %. Next, the cavities are filled with solid lubricant by means of impregnating rollers. This process step is controlled in such a way that a running-in layer of solid lubricant up to max. 0.03 mm thick is produced above the sliding layer. In further thermal treatments, the characteristic properties of the material system are adjusted, and the required thickness tolerances of the composite material are produced using controlled roller pairs.

Plain bearing production

Sliding elements in a great variety of designs are produced from P180 in cutting, stamping and shaping processes. Standard designs are:

- Cylindrical bushes
- Flange bushes
- Thrust washers
- Strips

In a final step, plain bearings manufactured from P180 undergo corrosion protection treatment on the bearing back, face reliefs and striking faces.

Standard version: Tin Layer thickness: approx. 0.002 mm

Properties of P180

- Lead-free
- Compliant with Directive 2011/65/EU (RoHS II)
- Very low stick-slip tendency
- Extremely resilient, especially with edge wear
- Low and constant friction value
- Very good wear resistance in dry running and wet running
- Universally applicable: suitable for rotary, oscillating and axial applications
- Excellent chemical resistance
- High resistance to erosion
- Largely resistant to swelling
- Compatible with all common dry-running steel shafts

Preferred areas of application

- Operation under dry and lubricated running conditions, where lead-free is required
- Rotating or oscillating movements up to a velocity of 2 m/s
- Linear movements
- Temperature range –200°C to 280°C

Hydrodynamic operation

Use in hydrodynamic conditions is possible without problems up to a sliding speed of 10 m/s. The material has a high resistance to erosion and cavitation. Motorservice offers the calculation of hydrodynamic operating states as a service.

Tin is used as temporary corrosion protection and an assembly device.

N

The material P180 is suitable as a substitute for materials containing lead and in some cases can exceed their performance limits.

TYPICAL APPLICATIONS

Fluid pumps

Additional applications:

- Actuators
- Steering systems
- Solenoid applications
- Seat adjusters
- Hydraulics
- Pneumatics

Compressors

Shock absorbers

Material composition P180

01	Running-in layer	
	PTFE matrix with bulking agent ¹⁾ Layer thickness [mm]:	max. 0.03
02	Sliding layer	
	Tin bronze Layer thickness [mm]: Pore volume [%]:	0.11-0.26 Approx. 30
03	Bearing back	
	Steel Steel thickness [mm]: Steel hardness [HB]:	Variable 100-180

System composition

Layer system

Running-in layer				
Components	% weight			
PTFE	60			
BaSO ₄	16			
Other bulking agents	24			
Sliding layer				
Components	% weight			
Sn	9 to 11			
Cu	Remainder			
Bearing back				
Material	Material information			
Steel	DC04			
	DIN EN 10130			
	DIN EN 10139			

Chemical composition

Characteristic values, load limit	Designation	Unit	Value	
Permissible pv value	pv _{perm.}	MPa · m/s	2.2	
Permitted specific bearing stress				
• Static	p _{perm.}	MPa	250	
 Concentrated load, circumferential load at sliding speed ≤ 0.013 m/s 	p _{perm.}	MPa	160	
• Concentrated load, circumferential load at sliding speed < 0.035 m/s	p _{perm.}	MPa	56	
 Concentrated load, circumferential load, increasing at a sliding speed of ≤ 0.070 m/s 	p _{perm.}	MPa	28	
Permitted sliding speed				
 Dry running at p ≤ 1.10 MPa 	V _{perm.}	m/s	2	
Hydrodynamic operation	V _{perm.}	m/s	10	
Permitted temperature	T _{perm.}	°C	-200 to +280	
Coefficient of thermal expansion				
• Steel back	α _{st}	K ⁻¹	11 · 10 ⁻⁶	
Coefficient of thermal conductivity				
• Steel back	λ_{st}	W(mK) ⁻¹	40	

Material characteristics P180

SUSTAINABILITY

¹⁾ The pores of the sliding layer are also filled with this lubricant mass.

